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We have performed a high-precision Monte Carlo study of the dynamic critical 
behavior of the Swendsen-Wang algorithm for the two-dimensional three-state 
Potts model. We find that the Li-Sokal bound (Tint. ~ >/const x C.)  is almost but 
not quite sharp. The ratio rint.,~/C/t seems to diverge either as a small power 
(~0.08) or as a logarithm. 
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1. I N T R O D U C T I O N  

Monte Carlo (MC) simulations c ~-4~ have become a standard and powerful 
tool for gaining new insights into statistical-mechanical systems and lattice 
field theories. However, their practical success is severely limited by critical 
slowing-down: the autocorrelation time r - - tha t  is, roughly speaking, the time 
needed to produce one "statistically independent" configuration--diverges 
near a critical point. More precisely, for a finite system of linear size L at 
criticality, we expect a behavior r ~ L-- for large L. The power z is a dynamic 
critical exponent, and it depends on both the system and the algorithm. 

Single-site MC algorithms (such as single-site Metropolis or heat 
bath) have a dynamic critical exponent z > 2. This makes it very hard to 
get high-precision data very close to the critical point on large lattices. 

In some cases, a much better dynamical behavior is obtained by 
allowing nonlocal moves, such as cluster flips. 2 The Swendsen-Wang (SW) 
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cluster algorithm c7~ for the q-state ferromagnetic Potts model achieves a 
significant reduction in z compared to the local algorithms: one has z 
between 0 and ~ 1, where the exact value depends on q and on the dimen- 
sionality of the lattice/6) The most favorable case is the two-dimensional 
(2D) Ising model ( q = 2 ) ,  in which z <0.3 (see below)/7 io~ In other cases, 
the performance of the SW algorithm is less impressive (though still quite 
good): e.g., - = 0.55 _ 0.03 for the 2D three-state Ports model, tt~ z ~ 1 for 
the 2D four-state Ports model, ~ 14)and z,~ 1 for the 4D Ising model, ttS'16~ 
Clearly, we would like to understand why this algorithm works so well in 
some cases and not in others. We hope in this way to obtain new insights 
into the dynamics of nonlocal Monte Carlo algorithms, with the ultimate 
aim of devising new and more efficient algorithms. 

There is at present no adequate theory for predicting the dynamic 
critical behavior of an SW-type algorithm. However, there is one rigorous 
lower bound on z due to Li and Sokal. ~1~ The autocorrelation times of the 
standard (multicluster) SW algorithm for the ferromagnetic q-state Potts 
model are bounded below by a multiple of the specific heat: 

Tint,, I ,  Tint.,C,, Tcxp ~ const x C H (1.1) 

Here ~ is the bond density in the SW algorithm, g is the energy, and C .  
is the specific heat; r~,,t and rc~p denote the integrated and exponential 
autocorrelation times, respectively, t4'6~ As a result one has 

7"int.. I ' ,  "Tint.,'~, Z e x p ) - -  (1.2) 
V 

where ~ and v are the standard static critical exponents. Thus, the SW 
algorithm for the q-state Potts model cannot completely eliminate the criti- 
cal slowing-down in any model in which the specific heat is divergent at 
criticality. The bound (1.1)/(1.2) has also been proven to hold ~131 for the 
direct SW-type algorithm ~ ~71 for the Ashkin-Teller (AT) model/Ls. ~91 

The important question is the following: Is the Li-Sokal bound 
(1.1)/(1.2) sharp or not? An affirmative answer would imply that we could 
use the bound to predict the dynamic critical exponent(s) - given only the 
static critical exponents of the system. There are three possibilities: 

(i) The bound (1.1) is sharp (i.e., the ratio r /C,  is bounded), so that 
(1.2) is an equality. 

(ii) The bound is sharp modulo a logarithm (i.e., r/Cl.l ~ log/' L for 
p > 0 ) .  
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(iii) The  bound  is not sharp (i.e., r / C n ~ L  p for p > 0 ) ,  so that  (1.2) 
is a strict inequality. 

Unfor tunate ly ,  the empirical  si tuation, even for the simplest cases, is far 
f rom clear. Let us review the status of  this p rob lem for the 2D Pot ts  models.  
For  the Ising case, the numerical  da ta  ~ ml are consistent  with a power- law 
behavior  with z~nt. a ranging f rom 0.35 _+ 0.01171 to 0.25 _+ 0.01.19" Io) However ,  
the da ta  are also consistent  with a logar i thmic behavior  z~nt, a = 0 x log. 18~ In 
ref. 13 we reanalyzed the high-precision da ta  of  Baillie and Codding ton  ~9' ~o~.3 
and found that  the rat io r~n,,,~./C1.1 behaves  mos t  likely as a pure  power  law 
~ L '  with p=0 .060+_0 .004  (statistical error  only) or  as a logar i thm 
~ A  + B l o g L .  This means  that  the bound  (1.1) is either non-sharp  by a 
small power  or  else it is sharp  modu lo  a logar i thm (in the latter case, the 
leading te rm would be zi,,,~. ~ log ' -L) .  It is extremely difficult to distinguish 
between these two scenarios with lattice sizes up to only L =  512. 

The  three-state Pot ts  model  was first considered under  this perspective 
in ref. 11. The  dynamic  critical exponent  was found to be z~,,,~ -- 0.55 +_ 0.03, 
which is significantly larger than  the exact result ~/v = 2 / 5  = 0.4. ~2t~ So, it 
seemed that  the bound  (1.2) was not  sharp  at all. 

The  four-state Pot ts  model  is ra ther  peculiar: the naive fit to the data,  
z~,,.~ = 0.89 _+ 0.05, ~1~ is smaller than the (exactly known)  value ofo~/v = 1.~22~ 
The  explanat ion of this pa r adox  is that  the true leading te rm in the specific 
heat  has a multiplicative logar i thmic correction,  C t . ~  L log-3/2L. 114"-~3 2.sl 
Indeed, a naive power- law fit to the specific heat  yielded ct/v = 0.75 +_ 0.01, 
consistent with the bound  (1.2). A high-precision s tudy of  this model  was 
carried out  in refs. 12 and 13. 4 Naive  power- law fits to the da ta  showed that  
the bound  (1.2) was satisfied: zim, a = 0.876 + 0.012 and ot/v = 0.768 _+ 0.009. 
On  the other  hand,  the behav ior  of  the ratio r~,,.a/C,~ was consistent only 
with two scenarios: a power  law --~ L p with p -- 0.118 _+ 0.012 (statistical error  
only) or  a logar i thmic growth  ~ A  + B log L. This means  that  ( 1.1 ) fails to be 
sharp  either by a small power  or by a logari thm. In conclusion, there are two 
likely behaviors  for the au tocorre la t ion  time: either v~,,,.a "" L" log-3/2 L with 
q ~  1.12 or else r ~ , t . a ~ L  log -~/2 L. In bo th  cases, we find multiplicative 
logar i thmic correct ions to the au tocorre la t ion  time, which make  the numeri-  
cal analysis extremely difficult. These two scenarios for the ratio r~,t,,;/C~ 
coincide with those obta ined  for the Ising case. 

The exact value of the specific heat at finite L was taken from the paper by Ferdinand and 
Fisher.~2m 

4 In reg. 12 and 13 the "embedding" version of an SW-type algorithm [br the AT model was 
used. This algorithm reduces to the standard SW algorithm at the [sing subspace, but not 
at the four-state Potts subspace. However, it was shown numerically that both algorithms 
belong {as expected) to the same dynamic universality class at the lbur-state Potts subspace. 
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In summary, for the 2D Potts models with q = 2  and q--4 ,  the 
Li-Sokal bound m i g h t  be either sharp modulo a logarithm or else n o t  s h a r p  

with a very small power p =- z - ~ /v  (0.04 < p < 0.12). Moreover, if we inter- 
polate between these models by following the self-dual (critical) curve of 
the AT model, c~8'~9) we obtain ~2~3J the same two scenarios: the ratio 
r~nt,~:/C H either grows like a power law with a very small power p (which 
increases slightly as we move from the Ising model to the four-state Potts 
model along the AT self-dual crave) or else grows like a logarithm. Thus, 
there is some kind of continuity along the AT self-dual curve for the 
dynamic critical behavior of the SW algorithm. 5 

These results have led us to reappraise the status of the Li-Sokal 
bound for the 2D three-state Potts model. In ref. 11 the bound was 
declared n o t  s h a r p  on the basis of numerical evidence suggesting that 
p - z - o~/v = 0.15 __ 0.03. However, this value is not much larger than that 
obtainedtL,.~31 for the four-state Potts model; this suggests that the data for 
the three-state model might also be consistent with a logarithm. Indeed, a 
closer look at the results of ref. 11 concerning the three-state model reveals 
that the lattices studied were not very large (L~<256) and the statistics 
were not very high (the number of iterations for the L = 256 lattice was at 
most 25 x 103"t'int,,~). This motivated us to reconsider this model and extend 
the results of ref. 11 to larger lattices with higher statistics. 

This paper is organized as follows: Section 2 reviews the basics of the 
Swendsen-Wang algorithm for the Potts models as well as the proof of the 
Li-Sokal bound for these models. In Section 3 we describe our Monte 
Carlo simulations. In Section 4 we discuss in detail our methods of statisti- 
cal data analysis. Finally, in Section 5 we present the analysis of our 
numerical (static and dynamic) data, culminating in a discussion of the 
sharpness of the Li-Sokal bound. 

2. BASIC SETUP AND NOTATION 

2.1. Potts Model and Swendsen-Wang Algorithm 

The q-state Potts model assigns to each lattice site i a spin variable ai 
taking values in the set { 1, 2 ..... q} ; these spins interact through the reduced 
Hamiltonian 

~o, ,~  = - /~  F. (6o,.~,-I) (2.]) 
< 0) 

s A similar study was carried out in ref. 17 for the single-cluster version of the algorithm, but 
the lattices were not very large (L ~< 2561. 
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where the sum runs over all the nearest-neighbor pairs ( / j ) .  To simplify 
the notation we shall henceforth write 6 , , . v - 6 ~ ,  for a bond b =  ( / j ) .  
The ferromagnetic case corresponds to fl > O. The partition function is 
defined as 

Z=~e Y~ = ~ exp [ f l ~  (fi~h- 1)] (2.2) 

Finally, the Boltzmann weight of a configuration { a} is given by 

= 1  i-i exp[fl(6~,._ 1) ] 1 Wvo,,({a}) 
Z ,, =--~  

(2.3) 

where p = 1 - e- / (  
The idea behind the Swendsen-Wang algorithm ~46"26~ is to decompose 

the Boltzmann weight by introducing new dynamical variables nb =0,  1 
(living on the bonds of the lattice) and to simulate the joint model of old 
and new variables by alternately updating one set of variables conditional 
on the other set. The Boltzmann weight of the joint model is 

Wioi.t({ a }, {n} ) = 1  ~ [(1 _ p) 6,,~.o + Pfi~,.O,,h., ] (2.4) 

The marginal distribution of (2.4) with respect to the spin variables repro- 
duces the Potts-model Boltzmann weight (2.3). The marginal distribution 
of (2.4) with respect to the bond variables is the Fortuin-Kasteley# 27--'9~ 
random-cluster model with parameter q: 

'E II 1 W.c({n})= 2 I-I p 1-I ( l - p )  q'~'~"~' 
IT: I I i t  ~ | h :  f l  3 = 0 

(2.5) 

where ~({n}) is the number of connected components (including one-site 
components) in the graph whose edges are the bonds with n~, = 1. 

We can also consider the conditional probabilities of the joint distribu- 
tion (2.4). The conditional distribution of the {n} given the {a} is as 
follows: Independently for each bond b = ( i j ) ,  one sets nh = 0 when a; # o~j 
and sets nt,= 0 and 1 with probabilities 1 - p  and p, respectively, when 
a ; =  aj. Finally, the conditional distribution of the {a} given the {n} is as 
follows: Independently for each connected cluster, one sets all the spins a~ 
in that cluster equal to the same value, chosen with uniform probability 
from the set { 1, 2 ..... q}. 

The Swendsen-Wang algorithm simulates the joint probability dis- 
tribution (2.4) by alternately applying the two conditional distributions just 
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described. That is, we first erase the current {n} configuration and generate 
a new {n} configuration from the conditional distribution given {a}; we 
then erase the current {a} configuration and generate a new {a} con- 
figuration from the conditional distribution given {n}. 

2.2. Li-Sokal Bound 

To prove the Li-Sokal bound we first notice that the transition matrix 
Psw of the Swendsen-Wang algorithm can be written as a product 

Psw = Pbond P~oi. (2.6) 

where Pbond (the update of the bond variables) and P,o~., (the update of the 
spin variables) are given by the conditional expectation operators E(-]{ a}) 
and E(. [ {n} ), respectively. 

The strategy behind the proof is to compute explicitly the autocorrela- 
tion function at time lags 0 and 1 for a suitable observable (9 (which we 
will choose to be a "slow mode" of the algorithm). The unnormalized 
autocorrelation function is defined as 

C~,e(t ) - < O(s) (9(s + t)> - <(9>z (2.7) 

(where the expectations are taken in equilibrium), and the normalized 
autocorrelation function as 

c~(t) c~(t) (2.8) 
p~.~, (t) - C~. e(0~ - var((9------) 

Then, using some general properties of reversible Markov chains, we will 
deduce lower bounds for the autocorrelation times L,L.e and %.~p.c,- These 
will in turn imply lower bounds on the dynamic critical exponents z~,t. ~ 
and %xp.~. 

For the observable (_9 we shall use the bond occupation 

oJV" _= ~ n/, (2.9) 
h 

From the joint Boltzmann weight (2.4) it is easy to compute the following 
bond expectation values conditional on the spin configuration {a}: 

E(n~ I {a} ) = p6~ (2.10a) 

E(n,,nb,[{a})=~p2c~,fi~,, ,  for b C b '  
( p~,,, for b = b '  (2.10b) 



SW Algorithm for 2D 3-State  Potts Model 7 

From these equat ions it is easy to compute  the mean values ( A t )  and 
( y 2 )  and thus C., ..,-(0) = v a r ( X )  = ( X 2)  - ( J V )  2: 

(A r)  = p ( r  (2.11a) 

(o,tr2) = p 2 ( g z )  + p ( 1 - p ) ( g )  (2.11b) 

C.,..~.(O)=var(Jff)=p2var(~)+p(1 - p ) ( ~ )  (2.1 lc) 

where the energy is defined as 

g - Z 6 , , ,  (2.12) 
h 

The unnormalized autocorrelat ion function at time lag 1 is given by 

C,.., .( 1 ) = ( ~4r(0) o,lr( 1 ) ) - (.A/') 2 = var( P bond ~ = var(E( JV[ { a} )) 

(2.13) 

Now,  Pbo,do'V" is equal to 

Pb,,,,dJV" ---- E(~U I {o-} ) = p ~ 6"h = p,~ (2.14) 
h 

Therefore, 

C ,., .(1 ) = p2 var(g)  

and 

(2.15) 

where the energy density E and the specific heat C H have been defined as 

E = l  ( g)  (2.17) 
V 

CH = 1  v a r ( g ) - - ! .  [ ( ,~2)  _ (g,)_~] 
V V 

(2.18) 

and V is the number  of  lattice sites. 

C , .  ,-(1) pen (1 - p ) E  
p.,. ,.(1) - = - -  = 1 - (2.16) 

C.~.,.(O) p C u + ( 1 - p ) E  p C H + ( 1 - p ) E  
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The correlation functions of jfr under Psw - Pbond  Pspin are the same as 
under the positive-semidefinite self-adjoint operator P~w = P~p~,Pbo,,JP,r,i,. 
This implies (see, e.g., ref. 4) that we have a spectral representation 

I 

p., . . . ( t)  =fo  2i'f dv(2) (2.19) 

with a positive measure dr. From this spectral representation we conclude 
that 

p. ,., .(t) ~> p., . , .(  1 )f,t (2.20) 

If we now recall the definitions of the integrated and exponential 
autocorrelation times 

rim..l 2,  . . . .  p ' ' ' ' ' ( t )  (2.21) 

-Itl 
= lim (2.92) r~xP"" I,l-~- logp., .  ,.(t) 

we conclude from (2.16)/(2.20) that 

1 l + p , . , - ( 1 )  
ri,t.. ,./> ~ x 1 - p. , . ,  .( 1 ) ~> const x CH (2.23) 

--1 
r~x~" ~/> log p. ,.. ,.( 1 ) ~> const x Ctt (2.24) 

These are precisely the bounds (1.1). If we take into account the expected 
behavior close to the critical point of the specific heat and the autocorrela- 
tion times, we deduce immediately the bounds (1.2). 

Similar bounds hold for the autocorrelation times of the energy g. 
This can be seen from the fact that Pbo ,d , /V"  = pg, which implies that 

C~(t) = p -2C.~ .. ,.-(t + 1 (2.25) 

and hence 

pax(t) _ p . . , .  , . ( t  + 1)/> P.,-, (t) (2.26) 
p.,. ,.(1) 

This equation proves that 

rcxp. x = r~xp. ,. (2.2"/) 
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and furthermore allows us to bound r~,,t., ~ above and below in terms of 
Tint , .  i "~ 

"rim..v--- 1/2 1 ri.,. .,. 
t i n t . ,  I ~ Tint . ,q  = ~ - -  (2.28) p.,-.,.(1) 2 p.,-.,-(1) 

If the critical slowing-down is not completely eliminated, we expect the fac- 
tor p. ,. ,.(1) to approach 1 (from below) as L--* oo. Moreover, irrespective 
of the presence or absence of critical slowing-down, we expect p., .. ~.(1 ) to 
be bounded away from zero as L ~ oo. Modulo this very weak hypothesis, 
(2.28) implies the equality of the dynamic critical exponents for the energy 
and bond-occupation observables: 

Zint,,e, ~--- Zin t , .  I (2.29) 

Unfortunately, we do not know how to rigorously rule out "exotic" 
behaviors, in which p. ,.. ,-( 1 ) tends to zero as L ---, ov and yet ri,t. ,. diverges 
because the autocorrelation function has an extremely long tail. 

Finally, we can define a new ("energy-like") bond observable: the 
nearest-neighbor connectivity 

g'  = ~'. Yl, (2.30) 

where )'h equals 1 if both ends of the bond b belong to the same cluster, 
and 0 otherwise. More generally, the connectivity )'o can be defined for an 
arbitrary pair i, j of sites: 

y0.({n}) = {10 if i is connected to j (2.31) 
if i is not connected to j 

The interest in 8' stems from the fact that the conditional expectation of 
fi~, given the bond configuration {n} is essentially Yh: 

1 
E ( 1 - 6 ~ , , l { b } ) = q -  ( 1 - ? h )  (2.32) 

q 

This implies the following relation between the energy and the connectivity 
densities: 

k _ E = q - l ( k _ E ,  ) 
2 q 

(2.33) 
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where k is the coordination number of the lattice (i.e., the number of 
nearest neighbors of any given site) and the connectivity density E '  is 
defined as 

E '  1 = ~  (~r (2.34) 

Furthermore, (2.32) tells us that 

h 

q--  1}-, ( 1 , q - l [ ' k V  ) 
q h - 3'"; = - - ~  ~ , 2 - -  g '  (2.35) 

This implies that 

C~,,~,(t) = C~,~(t + 1 ) (2.36) 

and hence 

p~,~,(t) = p a~,(t + 1 ) >1 p ~ , ( t )  (2.37) 
Pex(  1 ) ' ' 

Thus, the bounds (1.1)/(1.2) hold also for the autocorrelation times of g'. 
Furthermore, we can obtain bounds analogous to (2.27)-(2.29) for the 
observable ~': 

rexp.,~ = rexp, a, (2.38) 

and 

ri,,t., ~ ~< ri,u.,s, ~ "rint'~r (2.39) 
p ,~( 1 ) 

Using again (2.28) and (2.26), we arrive at 

ri, , ,  ,. ~< ri,,t.a, ~< r i""  ' - -  (2.40) 
p.,..,.(2) 

I f p  ,. ,.(2) is bounded away from zero as L--* oo, we can conclude that the 
dynamic critical exponents of ~4r, g, and ~' are all equal: 

Z i n t .  i - =  Z in t ,  ~ ----- Z i n [ , ? ,  (2.41) 
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3. DESCRIPTION OF THE S IMULATIONS 

3.1. Observables To Be Measured 

We made simulations of the two-dimensional three-state Potts model 
at criticality, 

fl = fl,. = log(1 + x/3) ~ 1.00505254 (3.1) 

on a periodic square lattice of linear size L. 
We measured five basic observables. Three of them have been already 

defined: the energy 8, (2.12); the bond occupation JV', (2.9); and the 
nearest-neighbor connectivity ~', (2.30). The other two are 

= q 6~,.~ (3.2b) 
q - 1  q - 1  

and 

. ~ . = 1 (  y,a.,.e?.,,.,.,/l. 2+ ~ a''ee"'''-/t- 2) (3.3a) 
2 \ .,. 

q 1 q ( S" (~ e2rax'/Ll2q-I~ " t~ e2~Zi'v'/L]2"~ (3.3b) 
--q--  l X S:L= .~ ..... I ] .~ ..... I J 

where a.,. e IR 'j- t is the Ports spin in the hypertetrahedral representation 
[for q =  3 this means a.,. = (cos(27~a.,./3), sin(2rca,./3))], V= L 2 is the num- 
ber of lattice sites, and (x~, x2) are the Cartesian coordinates of point x. 
The observable ~ can be regarded as the square of the Fourier transform 
of the spin variable at the smallest allowed nonzero momenta [i.e., 
(-I-2rc/L, 0) and (0, -I-2n/L) for the square lattice]. It is normalized to be 
comparable to its zero-momentum analogue J/2. 

From these observables we compute the following expectation values: 
the energy density E, (2.17); the specific heat Cu, (2.18); the connectivity 
density E',  2.34); the bond density 

the magnetic susceptibility 

N 1 
= - i f ( X ) ;  (3.4) 

1 
z =-p < :g'-); (3.5) 
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the correlation function at momentum (2n/L, O) 

1 
F = f f  ( ~ - > ;  (3.6) 

and the second-moment correlation length 

( z / F -  1 )l/2 
~ (3.7) 

2 sin(n/L) 

This definition of the correlation length is not equal to the exponential 
correlation length ( =  1/mass gap); but it is expected that both correlation 
lengths scale in the same way as we approach the critical point. 

R e m a r k .  As a check we have also computed the mean-square size 
of the clusters, 

cj_~ = ~ # ( ~ ) 2  (3.8) 

where the sum is over all the clusters %~ of activated bonds (i.e., with n,, = 1 ) 
and # ( ~ )  is the number of sites of the cluster c~. Using the For tu in-  
Kasteleyn identities, ~4-'7 29, it is not difficult to show that 

< ~ >  = < o,/r (3.9) 

For each observable (_9 discussed above we have measured its 
autocorrelation function p~.~.(t), (2.8); and from this function we have 
estimated the corresponding integrated autocorrelation time L,,.e, (2.21). 
In Section 4 we explain in detail how we derived estimates of the mean 
values and the error bars for both static and dynamic quantities. 

3.2. S u m m a r y  of the  S imula t ions  

We ran our Monte Carlo program on lattices with L ranging from 4 
to 1024. In all cases the initial configuration was random, and we discarded 
the first 105 iterations to allow the system to reach equilibrium; this discard 
interval is always greater t h a n  103"tint.,;. 6 For  4~<L~<256 the total run 
length was approximately 106L,,.,; ; for L = 512, it was 2.2 x 10Sri.t.~; and 
for L =  1024, it was 6.7 • 104rint.~. In all cases, the statistics are high 
enough to permit a high accuracy in our estimates of the static (error 

0.1-0.5 %) and dynamic (error ~ 0.5-2 %) quantities. 
For 4 ~< L ~< 128 our data were obtained from a single long run. For 

L = 2 5 6  we made two independent runs (with different random-number-  

~' We expect that r,,.,Jrr ~ 0.96 and r,:xr,.e; ' = rex p for this algorithm ~'3~ (see Section 5.5). So 
the discard interval is always greater than 103r~o. which is more than sufficient. 
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generator seeds); for L = 5 1 2  we made three independent runs; and for 
L = 1024 we made four independent runs. In each case we discarded the 
first 105 iterations of each run. The individual runs are all of length 
~104z-int.~, which is long enough to allow a good determination of the 
dynamic quantities. 

To test the program, we compated the static results on the 4 x 4 lattice 
to the exact solution (obtained by enumerating all the possible configura- 
tions on this lattice). The agreement was excellent (see Table I). In addi- 
tion, for all lattice sizes we checked the relations (2.11a), (2.33), and (3.9) 
between the mean values of static observables; the relations (2.25)/(2.36) 
among the autocorrelation functions C g.,., C~,~, and CA,e,; and the rela- 
tion (2.16) between the autocorrelation function p , .~(1) and the static 
observables E and CH. In all cases the agreement was also good. 

The CPU time required by our program is approximately 
7.2L 2 r on an IBM RS-6000/370, and 3.6L -~ r on a 
single processor of an IBM RS/6000 SP2. The total C P U  time used in the 
project was approximately 1.5 years on an IBM RS/600 SP2. The smallest 
lattices were run on an IBM RS-6000/370 at NYU, while the largest ones 
(L >~ 128) were run on the IBM SP2 cluster at the Cornell Theory Center. 

4. S T A T I S T I C A L  A N A L Y S I S  OF T H E  M O N T E  C A R L O  D A T A  

In this paper we are aiming at extremely high precision for both static 
and dynamic quantities; furthermore, we need to disentangle the effects of 
statistical errors from the effects of systematic errors due to corrections to 
scaling. For  this, it is essential to obtain accurate estimates not only of the 
static and dynamic quantities of interest, but also of their error bars: in this 
way we will be able (see Section 5) to perform X 2 tests which provide an 
objective measure of the goodness of fit in each scaling Ansatz. 

In this section we discuss in some detail how we performed the statisti- 
cal analysis of our raw Monte Carlo data. In particular, we describe how 
to compute the estimators for the mean value and the variance of both 
static and dynamic quantities. These methods are based on well-known 
results of time-series analysis,~3~ which we review briefly in Section 4.1. 7 
Then (Section 4.2) we describe an alternative analysis method, based on 
independent "bunches," and report the results of detailed cross-checks that 
confirm (with one slight exception) the validity and reliability of the 
standard time-series-analysis method. 

7 A review of time-series-analysis methods as applied to MC simulations can be found in 
rel: 32. Appendix C, and in ref. 4. 



14 Salas and Sokal 

4.1. " S t a n d a r d "  T i m e - S e r i e s - A n a l y s i s  M e t h o d  

Let us consider a generic observable Co whose mean is equal to p~,. Its 
corresponding unnormalized and normalized autocorrelation functions are 
denoted by Co~(t) = (C0(0) (9(t)) - ((0) 2 and pe~.(t)= Cer 
respectively. We also define the integrated autocorrelation time 

r~.,, e -~_ pee(t) (4.1) 
l =  - e l _  

Given a sequence of n Monte Carlo measurements of the observable 
O--call them {(91 ..... C0,}--the natural estimator of the mean p~, is the 
sample mean 

g_= l  ~ C/ (4.2) 
I1 i = 1  

This estimator is unbiased and has a variance 

va r (g )=  1 ~ C c e ( r - s )  (4.3a) 
1 l -  r.,~" = I 

1 "~ '  ( ~ l )  
= -  1 - -  Cel,(t) 

t l  t = - - ( n - - I )  

(4.3b) 

1 
~ -  2Zi,lt.e Cce(0) for n>~rint, o (4.3c) 

/ l  

This means that the variance is a factor 2r~,t. c, larger than it would be if the 
measurements were uncorrelated. It is therefore very important to estimate 
the autocorrelation time ri,u. e in order to ensure a correct determination of 
the error bar on the (static) quant i ty /G.  

The natural estimator for the unnormalized autocorrelation function 
Cee(t ) is 

1 - Id  

Coe(t)=-n_lt] ~" (Oi-pe)((gi+l, l-pe) (4.4) 
i = l  

if the mean p~, is known, and 

1 ,, - I,I 
Cc~( t ) -  

n - l t l  ~ (~ ; -  6)(0'+ I'l -- ~) i = 1  

(4.5) 
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if the mean p e is unknown. We emphasize that, for each t, the estimators 
dee(t) and ~(,e(t) are random variables [in contrast to Cc~,(t), which is a 
number]. The estimator Cee(t ) is unbiased, and ~ee(t) is biased by terms 
of order 1/n. The covariance matrices of (~c~c, and ~c,e are the same to lead- 
ing order in the large-n limit (i.e., n >> ri,,t.e ), and we have q3~ 

cov(~'~,~(t), ~e, ,(u))  

1 
[Ce~(m ) C e e ( m + u  t)+Ce~(m+u)Ce~(m t) 

~ 7  I l l  ~ - -  -/__ 

where t, u >/0 and t~- is the connected four-point autocorrelation function 

~,-(r, s, t ) -  ( ( c 9 , - u  e )(~, + , . - ~  ~ )(~,+. , . -u e )(c9, + , - ~ e  ))  

--Cee(r) Cr, c,(t-s)--Cee(s) C~( t - r )  

- Cee , ( t )  C e ~ , ( s - r )  (4.7) 

natural estimator for the normalized autocorrelation function The 
p~.~.(t) is 

/~,,(t) = O~,(t)/O~(O) 

if the mean kt~, is known, and 

pee(t) - (t)/Ce~(O) 

(4.8) 

(4.9) 

if the m e a n / ~  is unknown. The estimators/~,~,(t) and/~,c,(t) are biased by 
terms of order 1/n as a result of the ratios of random variables in 
(4.8)/(4.9). The covariance matrices of/~ee and/~ee are the same to leading 
order in 1/n. If the process is Gaussian, this covariance matrix is given in 
the large-n limit by 13~' 

covO,,,,(t), #~,,(u)) 

1 ~ [pee(m) pee(m+t u)+p~,e(m+u)pec,(m t) 

+ 2pee(t)p~,(u) p~,(m)- 2pee(t ) p~,e(rn) p~,~,(rn -u)  

- 2p~,c(u) pce(m) p~e(m--t)] +o ( I )  (4.10) 

82287 I-2-2 
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If the process is not Gaussian, then there are additional terms proportional 
to the fourth cumulant x(m, t, t - u ) ;  these terms are, like those in (4.10), 
of order 1/n. The simplest assumption is to consider the stochastic process 
to be "not too far from Gaussian" and drop all the terms involving h-. If 
this assumption is not justified, then we are introducing a bias in the 
estimate of this covariance. 

Finally, we shall take the estimator for the integrated autocorrelation 
time to be ~32~ 

M 

f~.,.~=�89 ~ ~ee(t) (4.11) 
t =  M 

[or  the same thing with /~(,~,(t)], where M is a suitably chosen number. 
The  reason behind the cutoff M is the followng: if we were to make the 
"obvious" choice M = n +  I, then the resulting estimator would have a 
variance of order 1 even in the limit n ~ oo; this is because the terms ~0(, e(t) 
with large t have errors (of order 1/n) that do not vanish as t grows [-cf. 
(4.10)], and their number is also large (~n) .  Taking M ~ n  restores the 
good behavior of the estimator as n--* co. The bias introduced by this rec- 
tangular cutoffs is given by 

b i a s ( f i . c ( , ) = -  ~ ~ p(,~,(t)+o (4.12) 
- I t l  > M 

The variance of the estimator f~.,.~, can be computed from the covariance 
(4.10); the final result is ~32~ 

2 ( 2 M +  1) 
var(fi.t. ~ ) ~ r?m.~ (4.13) 

/,/ 

where the approximation r~.,. e ~ M ~ n  has been made. A good (self-con- 
sistent) choice of M is the following~3-'~: let M be the smallest integer such 
that M>~cf,,,.~,(M), where c is a suitable constant. If the normalized 
autocorrelation function is roughly a pure exponential, 9 then the choice 
c ~ 6  is reasonable. Indeed, if we take pee(t)=e-m/~ and minimize the 
mean-square error 

MSE(f,..~, ) -b ias(f i , . .  (,)2+ var(fi,..e ) (4.14) 

We could use more general cutoff functions, but this rectangular cutoff is the most  
convenient for the present purposes.  

9 This has been lbund empirically to be true in the SW algoritlun for the 2D lsing ~ and four- 
state Potts models q ~ and is confirmed here for the three-state Ports model I see Section 5.5 ). 
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using (4.12)/(4.13), we find that the optimal window width is 

Mopt=~ log  ~ - 1  (4.15) 

For n/r ~ 106 (resp. 104), w e  have Mopt/r ~ 6.56 (resp. 4.26). 
As notes above, we expect the estimtor f~,t,c, to have a bias of order 

%,t.e/n, due to the nonlinearities in (4.8)/(4.9). t~ To make this bias negli- 
gible, we need long runs. It has been shown empirically that this procedure 
works fairly well when n > 104"~int, e .141 

R e m a r k s .  1. The estimation of the error bar for the specific heat is 
a little bit more complicated. One can obtain va r (C , )  by computing 
var(8),  vat(82), and cov(8, 82). This procedure has a numerical drawback: 
sometimes the covariance matrix for the observables 8 and 82 is nearly 
singular; then a small statistical fluctuation can cause the estimator of this 
matrix to be non-positive-definite. We are not aware of any procedure that 
ensures that the estimator of a covariance matrix is also positive-definite. 
To overcome this difficulty, we considered the observable (0 = ( 8 - - l / e )  2, 

which can be studied using the standard method. As we do not know 
exactly the value of P~r, we can use instead the sample mean ~ (which 
should be computed first). To leading order in l/n, this procedure gives the 
right error bar for the specific heat. 

2. We have a similar problem when computing the error bar for the 
second-moment correlation length (, which is a function of the two quan- 
tities Z and F [cf. (3.6)]. In this case we considered the random variable 

j / 2  
(9' = - -  (4.16) 

#.//2 /.t: 

which has automatically a zero mean. The error bar for the second- 
moment correlation length can be written easily as a function of the suscep- 
tibility Z, the quantity F, and the variance of the above-mentioned observ- 
able (9'. With this trick we take into account the cross-correlation between 
#//2 and ~ .  This method needs the mean values/~.,., and l l : ;  in practical 
situations they are substituted by the corresponding sample means jr and 
~- (which" must be computed first). 

This is the standard procedure we have used to analyze each of 
our Monte Carlo runs. Estimates coming from multiple independent runs 

m The bias on the estimator "~i,,t. tn also induces a bias on the estimated variance (4.3) of the 
sample mean C T. This bias is of order l/n 2, i.e., a factor l/n down from the variance 14.3) 
itself. 
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(for L~>256) were merged using the standard formulas for statistically 
independent data. The results are reported in Table I (static quantities) and 
Table II (dynamic quantities). The results on ri,t. ~ for 16 ~< L ~< 256 can be 
compared with those reported in ref. 11; the agreement is excellent 
(X2= 6.17, five degrees of freedom, confidence level 56 %). 

4.2. Method Based on Independent Bunches 

Unfortunately, this standard method does not provide an easy way to 
compute the error bar for complicated quantities such as ratio r~n~.JCH, 
which will play a central role in our analysis of the sharpness of the 
Li-Sokal bound (see Section 5.3). We can, of course, give an upper bound 
on the actual error bar by using the triangle inequality, but this upper 
bound will be a significant overestimate of the true value. If we were then 
to use this overestimate in fits, we would find artificially small values of Z2; 
as a result, the confidence levels would be artificially high, and useless 
for distinguishing good from bad fits. (At best we could distinguish better 
versus worse fits by looking at the relative values of Z-'.) 

This fact motivated us to look for an alternative method to compute 
the error bars. There is also another advantage in having an alternate 
mthod: we can independently check the assumptions and approximations 
made in the standard procedure. 

The second method works as follows. First, we split the whole sample 
o f n  MC measurements {Co t, ~ ..... (0,,} into m bunches of equal (or almost 
equal) length l - n / m .  For each bunch i (1 <~i<~m) we can compute the 
sample mean of the observable (9 and an estimate of its integrated 
autocorrelation times ((~. and f~,,,.(,.i, respectively). Indeed, we can also 
estimate the corresponding variances, but these estimates do not play any 
role in what follows. When computing the autocorrelation functions within 
each bunch, we used the whole sample mean (0 as our estimate of Pe 
(instead of the bunch sample mean C~); this trick reduces the bias in the 
estimates of the autocorrelation functions. 

In this way we obtain two sequences of single-bunch estimates {(~} 
and {'~nt.e.i}- If the bunches are long enough (i.e., l~r~,Le), then the 
estimates from distinct bunches are almost statistically independent. Thus, 
we can define our estimates as follows: 

6 ' - ] - -  ~. (~ (4.]7a) 
m i = l  

1 ~ (C~- d~') 2 (4.17b) v-~(cO')-=m(m - I-----~ ,=, 
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Table I. Static Data from the MC Simulat ions at the Critical Point of the 
Three-State Potts Model" 

L M C S  Z Ctt ~ E 

4 Exact 12.204711 1,496719 3.862380 1.710062 

4 4.9 12.2093+0.0054 1.4952+0.0021 3.8635+0.0043 1.71051+0.00039 

8 6.9 41.3527+0.0204 2.4712+0.0031 7.5419+0.0072 1.65391 +0.00026 

16 9.9 138.4491 +0.0723 3.7162+0.0046 14.9267+0.0134 1.62070+0.00016 

32 1 4 . 9  462.7014 + 0.2408 5.2941 +__ 0.0064 29.8509 + 0.0250 1.60223 +__ 0.00010 

64 1 9 . 9  1542.6921 +0.8428 7,3839+0.0094 59.6964+0.0501 1.59163+0.00006 

128 29.9 5135.9512+2.7481 10.1007+0.0127 119.3401 +0.0952 1.58552+0.00003 

256 40.8 17082.8221 +9.2802 13.7116+0.0176 238.4565+0.1888 1.58202+0.00002 

512 12 .9  56760.2838 __+ 65.0770 18.4752 +__ 0.0507 475.9494 +_ 0.7779 1.58001 + 0.00003 

1024 5.5 189676.5530 + 387.3500 24.5281 __+ 0.1247 958.8929 + 2.7875 1.57893 + 0.00003 

Exact 1.577350 

" For each lattice size L, we include the number of performed measurements M C S  in units of 
106, the susceptibility Z, the specific heat C , ,  the second-moment correlation length ~, and 
the energy E. The quoted errors correspond to one standard deviation (i.e., confidence level 

68 % ). The first row ("exact") gives the exact results for the 4 • 4 lattice, and the last row 
("L = ~ " )  gives the exact energy in the limit L ~ ~ .  

Table l l .  Autocorrelat ion Times for the Runs Performed at the Critical Point 
of the Three-State Potts Model" 

L Tint.  .//2 Z'int,. t "/-int.,~ l ' int. ,~ ' 

4 4.013 _ 0.018 3.205 __+ 0.013 4.023 + 0.018 4.034 + 0.018 

8 5.983 _ 0.028 5.194 _ 0.023 6.033 -I- 0.028 6,080 + 0.028 

16 8.816 __. 0.041 8.084 + 0,036 9.025 -t- 0.043 9.117 _ 0.043 

32 12.648 + 0.057 12.200 + 0.055 13.280 + 0.062 13.438 + 0.063 

64 18,101+0.085 18.313+0.086 19.549+0.095 19.769+0.097 

128 25.665+0.117 27.094+0.127 28.525+0.137 28.820 + 0.139 

256 - 35.691 +0.164 39.204+0.189 40.824+0.200 41.212+0.203 

512 49.775+0.480 56.667+0.583 58.511 +0.612 58.974+0.619 

1024 68,387 _ 1.183 80.489 _ 1.511 82.488 + 1.567 83.030 +_ 1.583 

" For each lattice size L, we include the integrated autocorrelation times for the squared 
magnetization (l'int..a_,), the bond occupation (tint. ~ }, the energy (Tint,,~,), and the nearest 
neighbor connectivity (r~,t.,~.). 
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~--- 1 E "Cint.~.i (4.17c) ftint, e "  - -  IT/ . 
t = l  

var(ri"t'e) ~ m(m--  1) (l ' int 'e ' i --  l'int'e ) 
i = l  

(4.17d) 

The quality of the results depends on the total number of measurements n 
and the number m of bunches we use. The merging of data coming from 
different runs is trivial in this case. 

For  4 ~< L ~< 256 we have extremely good statistics (n ~ 106~'int,r This 
allows us to vary m over at least one order of magnitude and thereby to 
provide a cross-check on the standard time-series analysis. In this discus- 
sion it is useful to divide the observables into three categories: linear static, 
nonlinear static, and dynamic. The first category includes ~, g', JV, j/g2, 
and ~ ,  whose sample mean values are linear in the raw MC data. The 
second category includes the specific heat and the second-moment correla- 
tion length, whose mean values are nonlinear functions of the raw MC 
data. Finally, the third category contains all the autocorrelation times, 
which are also nonlinear functions of the raw data. 

For  4~<L~<256 we first divided the whole sample into m- -100  
bunches, each of them with a length /~104~'int.e~. F o r  4~<L~<64 we 
repeated the analysis using m = 1000 bunches, each of them with a length 
I ~  103rint.~.. 

For  the linear static observables, the "standard" and "bunch" methods 
always give identical mean values; this is a trivial identity, provided that 
the bunch lengths are exactly equal. As for the error bars on these observ- 
ables, we find unsystematic discrepancies between the estimates given by 
the two methods: for m = 100 the discrepancies are of order 10%, and for 
m = 1000 they are of order 2 %. In order words, the size of these discrepan- 
cies is roughly of order ~ 1 / ~ ~  and the sign is random; this is exactly 
what one expects on theoretical grounds for the statistical fluctuations in 
the estimators (4.17b) and (4.17d). 

For  the nonlinear static observables, the agreement between the mean 
values coming from the standard and the bunch methods is exact only in 
the case of the specific heat; this is because we used the same estimator 
in both methods. For  the correlation length, the mean values show small 
systematic discrepancies between the two methods, of order 0.05-0.1 
standard deviations when m = 100; the bunch method always gives a larger 
estimate than the standard method. In absolute value, these discrepancies 
range from 6 x  10 -4  ( for  L = 4 )  to 2 x  10 -2 (for L =2 5 6 ) .  The same quali- 
tative behavior is found when we repeat the analysis with m =  1000 
bunches. Now the differences in the mean value of the correlation length 
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are 0.6-1.6 standard deviations. In absolute value, they range from 8 x 10-3 
(for L = 4 )  to 4 x  10 -2 (for L = 6 4 ) ,  i.e., they are roughly one order of 
magnitude larger than in the m = 100 case. Thus, the discrepancies in the 
mean value of the correlation length are systematic with a size of order 
~m;  this is exactly what one expects for the mean value of a nonlinear 
observable, which is afflicted by a bias of order 1In in the standard method 
versus 1/l=m/n in the bunch method. Regarding the error bars, we find 
unsystematic discrepancies of order 10% when m = 100, and of order 2 % 
when m = 1000. They behave like the error bars of the static linear observ- 
ables. 

For  the autocorrelation-time estimators, we find systematic differences 
between the two methods: the estimates coming from the standard method 
are consistently smaller than those coming from the bunch method. For 
m - 1 0 0 ,  these differences are rather small compared to the statistical 
error bars (<0.5  standard deviations). When m = 1000, these discrepancies 
are much more relevant: their size is roughly two standard deviations. 
In absolute value, the discrepancies when m =  1000 are one order of 
magnitude larger than when m = 100. Thus, we find a systematic bias of 
size ~m,  again as expected for a quantity which exhibits a bias of order 1/n 
versus 1/l. The error bars for the autocorrelation times are consistently 
larger for the standard method than for the bunch method, except for the 
specific heat, where the behavior is consistently the opposite one. For 
m =  100 bunches, these discrepancies are of order 15%; and for m =  1000 
the size remains at the same level. Thus, the discrepancies for the error bars 
of dynamic observables do not depend much on m; rather, they are of 
order ~ 1. 

From the above discussion, we conclude that for the linear static 
observables the two methods show excellent agreement both for the mean 
values (trivial equality) and for the error bars (random discrepancies of 
order 1/x/~).  The same holds for the error bars of the nonlinear static 
observables. This confirms that the standard method is giving accurate 
estimates of the error bars, at least when the run length n is large enough to 
provide a good determination of the autocorrelation time (which largely 
determines the static-quantity error bar). This 1 /x /~  dependence also con- 
firms our theoretical prediction that the standard method gives a more 
accurate estimate of the error bars than the bunch method. Indeed, the bunch 
method dan be considered roughly equivalent to employing the standard 
method with the window width M taken of  order the bunch length l; but if 
I>> r~,t.e (as it must be in the bunch method), this is an unnecessarily large 
window width, and thus leads to unnecessarily large statistical fluctuations. 

For  the mean values of the nonlinear observables (both static and 
dynamic), we likewise confirm the validity of the standard method. Once 
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again the s tandard method  is more  reliable than the bunch method,  but for 
a different reason: the bias of  order  1/n is much smaller than the bias 
of  order  1 / l = m / n .  The latter bias becomes particularly serious when the 
number  m of  bunches is large (as it must  be in order  to get good  estimates 
of  the error bars!). 

Finally, the least unders tood piece is the determination of  the error  
bar of  the autocorrela t ion time: our  data from the bunch method suggest 
that  the s tandard method may  be making a systematic error of  order  15 %. 
Perhaps this systematic error (if indeed it is real) arises from our  neglect of  
the contr ibutions of  the fourth-order  cumulant  x to the covariance (4.10). 
This point  definitely merits further investigation. 

In summary,  we think that the bunch method provides a good  confir- 
mat ion of  the estimates given by the s tandard method. We shall hereafter 
consider the values given by the s tandard method to be the definitive ones, 
except for the ratio Tint.,c,/Clt , where the s tandard method does not  yield 
any correct error  bar. In this latter case we shall use the central value com- 
ing from the s tandard method (which in fact agrees with the bunch-method  
value to within 0 .1 -1%;  the discrepancies are of  order  0.2 s tandard devia- 
tions), and the error  bars coming from the bunch method with I00 bunches 
(for 4~<L~<256), 26 bunches (for L = 5 1 2 ) ,  or  55 bunches (for L =  1024). 
We shall also compute  the upper  bound  on the error  bar  coming from the 
s tandard method combined with the triangle inequality. These results for 
ri,,t.~/C H are shown in Table III. 

Table III. Ratio Tint. RIG H for the Runs Performed at 
the Critical Point of the Three-State Potts Model" 

L "/" int, d ; / ~ ' l l  

4 
8 

16 
32 
64 

128 
256 
512 

I024 

2.6906 + 10.011 I, ~<0.0161 ) 
2.4413+(0.0092, ~<0.0145 ~ 
2.4285 __+ 10.0090, ~<0.0145) 
2.5084 __+ ( 0.0084, ~< 0.0147 I 
2.6476 + (0.01 [ 1, ~<0.0163 ) 
2.8241 __+(0.01 II, ~<0.0171 ) 
2.9773 +__ (0.0113, ~<0.0184) 
3.1670__+(0.0281, ~<0.0418) 
3.3630 +_ (0.0442, ~<0.0810) 

"Tile parentheses give our error-bar estimates. Tile Iirst num- 
ber shows the error bar coming I?om perlbrnaing the "'bunch" 
method with 100 bunches. The second number is obtained by 
using the triangle inequality with the numerical results 
coming fi'om the standard method {see Section 4). 
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Table IV. Numerical Estimates for the Static and 
Dynamic Critical Exponents of the Three-State Potts 

Mode l  and the  Exact Results 

Exponent Numerical Exact 

)'/v 1.73444 + 0.00043 26/I 5 
~x/v 0.4240 + 0.0030 2/5 

zi,,t., ~ 0.515 +__ 0.006 >/2/5 
zi,,~.e .. 0.514 + 0.006 >/2/5 
--int..I 0.529 + 0.006 >/2/5 
2.,..U'_ 0.475 +__ 0.006 

23 

5. DATA ANALYSIS  

For  each quantity Co, we carry out a fit to the power-law Ansatz 
d~ = A L  r using the standard weighted least-squares method. As a precau- 
tion against corrections to scaling, we impose a lower cutoff L ~> Lm~n on 
the data points admitted in the fit, and we study systematically the effects 
of varying Lm~,, on the estimates A and p and on the Z 2 value. In general, 
our preferred fit corresponds to the smallest L o , , ,  for which the goodness 
of fit is reasonable (e.g., the confidence level ~ is > 10-20%), and for which 
subsequent increases in L,,,,, do not cause the Z 2 to drop vastly more than 
one unit per degree of freedom. 

Our  final estimates for static and dynamic critical exponents are 
collected in Table IV. 

5.1. Stat ic  Quant i t ies  

There are a few exactly known results concerning the 2D three-state 
Potts model. We know all the critical exponents ~tg'-~ and in particular the 
ratios 

), 26 
- =  ,,~ 1.73333 (5.1) 
v 15 

2 
. . . .  0.4 (5.2) 
v 5 

~l "'Confidence level" is the probability that X 2 would exceed the observed wdue, assuming that 
the uuderlying statistical model is correct. An unusually low confidence level (e.g., less than 
5 %) thus suggests that the underlying statistical model is # w o r r e c t - - t h e  most likely cause 
of which would be corrections to scaling. 
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which are the relevant quantities we can directly estimate from our Monte 
Carlo data. The leading correction-to-scaling exponent is also known~34-35): 

0 = 2/3 (5.3) 

using the notation in which the correction term is Ifl-f l , . l  ~ or L -n/'" 
We can write the singular part of the free energy as a function of the 

thermal field t = r - t i c ,  the ordering field h, the leading irrelevant field u, 
and the linear size of the system L a s  (361 

f,.(t, h, L) = L- ' IF(  tL I/'', hL 'l-/~'/'', uL -~)/'') (5.4) 

where d is the dimensionality of the lattice. If we differentiate (5.4) twice 
with respect to the thermal field t and then take the limit t = h = 0, we get 
the specific heat at criticality on a finite lattice: 

: t 'O 2, 
CH(0, 0, L ) ~  (0, 0, L) = L~/"G(O, 0, ug -n/') (5.5a) 

= L ~ / " [ A + B L - ~  .- .]  (5.5b) 

where oc/v = 2 / v -  d, G is the second derivative of F with respect to its 
first argument, and the dots indicate subdominant corrections. Thus, the 
corrections to the specific heat at criticality are given by L -A with 
A = O/v = 4/5 = 0.8. A similar analysis can be carried out for the magnetiza- 
tion and the susceptibility, giving again corrections proportional to L -A. 

The energy E is obtained by differentiating the full free energy 
f=f , .+f , , . , ,  with respect to the thermal field t. The contribution of the 
nonsingular piece is believed to be trivial: there is numerical evidence 
that f ,s(t ,  L )= f ,~ ( t ,  oo)J 36~ In other words, this contribution has no L- 
dependence and gives merely the infinite-volume value of the energy at the 
given temperature, E(fl. oo). The contribution of the singular piece can be 
obtained by differentiating (5.4) once with respect to t; it goes to zero like 
L - J +  t/,,, which thus gives the leading correction to scaling for the energy. 
This correction is of order L -4/5, which (by pure coincidence as far as we 
can tell) is exactly the same order as the correction L - "  for the divergent 
static observables. Finally, we note that the energy of the 2D q - -3  Potts 
model at criticality is also exactly known ~t9~ to be E(fl,., co)= 1 + 1/x,/3.~ 
1.577350. 

We can check these predictions by performing the fit E - E ( f l , . ,  oo)=  
AL-'".  The quality of the fit is very good already for L,~in = 16: 

w = 0.803 + 0.002 (5.6) 
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with Z2=3 .23  ( 5 D F ,  l e v e l = 6 6 % ) .  The  agreement  with the predicted 
exponent  2 -  1Iv = 4 / 5  =0 .8  is truly spectacular.  (Indeed,  it is p robab ly  a 
coincidence tha t  the agreement  is so good. In general, one cannot  expect to 
obta in  anywhere  near  this accuracy for correct ion-to-scal ing exponents .)  

The  fits of  the susceptibility to a power  law A L  ~'/'' are quite stable. O u r  
preferred fit cor responds  to Lmi . = 64: 

y/v = 1.73444 _+ 0.00043 (5.7) 

with Z 2 =4 .09  (3 DF,  confidence level = 25 %). This result is 2.6 s tandard  
deviat ions away  from the exact value y/v = 1.73333. This  discrepancy could 
be due to correct ions to scaling. We can try to fit our  da ta  to 
AL26/15(1 + B L  -'~) with var ious  choices for A =  1.1, 1.0 ..... 0.1 as well as 
0 x log (i.e., a correct ion 1/log L). We find that  the best fits cor respond to 
A ~0 .8 ,  in agreement  with the theoretical  prediction; for A =0 .8  and 
Lmin = 8 we obta in  ;(2= 6.55 (6 DF,  level = 36 %).  Surprisingly, in all these 
fits we find that  the Z 2 remains  a lmost  cons tant  when Lm~ n is increased 
beyond  our  "preferred" value (and the confidence level consequent ly  
deteriorates):  for example,  with L m i , = 2 5 6  we get ; (2=3.37  ( 1 D F ,  
l e v e l = 7 % )  for the pure  power- law behav ior  and Z2=3 .91  ( 1 D F ,  
level = 5 % )  for the fit with y/v = 26/15 and A = 0.8. This  suggests tha t  the 
point  with L = 1024 is off by abou t  two s tandard  deviat ions (possibly 
because the error  ba r  is underest imatedt2) .  As a ma t t e r  of  fact, if we d rop  
this point,  we obta in  a good  power- law fit for Lmi, = 128: 

~/v = 1.73337 +_ 0.00080 (5.8) 

with ; (2= 0.39 (1 DF,  level = 53 %).  This result agrees excellently with the 
exact value. If  we impose  the right power  y /v=26/15  and try to fit the 
first correct ion-to-scal ing exponent  /I, we again find that  the best fits 
cor respond  to ,4 ,~ 0.8. Fo r  Lmi n = 8 we get X 2 = 3.84 (5 DF,  level --- 57 % ). 

Fo r  the specific heat  we find that  the fits to the power  law A L  :'/'' are 
not  stable at all: the confidence levels are horrible,  and there is a clear 
trend toward  smaller  values of  0c/v as Ln,~, is increased. The  least-bad fit is 
obta ined  for L m i  n = 256: 

o~/v = 0.4240 _ 0.0030 (5,9) 

with ;(2 ='3.80 (1 DF,  level = 5 %).  This value is eight s tandard  deviat ions 
away f rom the exact result o~/v = 2/5 = 0.4. Unlike the four-state Pot ts  

~2 This is quite possible: though the total run length at L = 1024 is 7 x 104rlnt.~, the hTdividual 
runs (on which the time-series analysis was performed) ranged in length from only 104rint.r  

to 2.5 x 104rint.~; and with such short runs the time-series analysis may not be completely 
reliable. 
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model, 123"4) we do not expct multiplicative corrections to the leading term 
of the specific heat. We do, however, expect additive corrections to scaling 
of the form AL2"5(1 +BL-A) .  If we try the same exponents A as in the 
susceptibility, we find a decent fit for A~0.6 :  for L,,,~,= 128 we get 
;(2= 1.21 (2 DF, level = 5 5 % ) .  This value of the exponent `4 is not far from 
the expected value 0.8, but the cause of the discrepancy is unknown; 
perhaps there is a large next-to-leading correction to scaling. 

Finally, the second-moment correlation length ~ is expected to behave 
linearly in L as L ~ co. In particular, the ratio x = ~/L should approach a 
constant x*. We have tested this behavior. Already for L,,,~, = 16 our data 
are consistent with a constant value 

~(L) 
x* = lim =0.93235 _0.00033 (5.10) 

with ;(2=8.08 ( 6 D F ,  l eve l=23%) .  The fact that a good fit can be 
obtained with such a small Lm,, implies that the corrections to scaling 
are very small for this observable. [ I f  we fit to ~(L) /L=x*  + B L  -~ with 
0.1 ~ ,4  ~ 1.5, we find a very slight improvement in the goodness of  fit, and 
the estimated x* decreases somewhat (by less than 0.0008 if ,4 ~ 0.6). But 
the estimated coefficient B is consistent with zero at the 1.5~ level.] As in 
the case of the susceptibility, we also find that the goodness of fit 
deteriorates as L~ is increased (e.g., for Lm~,,=512 we have Z2=4.80, 
1 DF, l e v e l = 3 % ) .  This might be due to the fact that the value for 
L = 1024 is a little bit off (or its error bar is underestimated). If we drop 
this point, we obtain a good fit again for the same Lmi, = 16: 

x* = 0.93229 -t- 0.00034 (5.11 ) 

with ;(- '=5.82 (5 DF, l eve l=32%) .  But now the fit with L,,,~,=256 is 
reasonable (Z- '= 1.24, I DF, level = 2 7 % ) .  We remark that the value x* 
should in principle be calculable by conformal field theory; we hope that 
someone will perform this calculation and test our results (5.10)/(5.11). 

5.2. Dynamic Quantities 

In this section we are going to fit the autocorrelation times for the 
observables Co = o ~, r  .,I," and ,/r to a simple power law rint. ~, = AL--~"'.q 

Let us start with the energy & The fit rmt,,~ " = AL :~~ is not very stable: 
the estimate of the power decreases systematically as L,,,, is increased, and 
the Z 2 is poor  until Lm~,,--- 128, where the estimate stabilizes within errors 
(this behavior suggests that there are strong corrections to scaling). Our  
preferred fit corresponds to L,,,i n = 128: 

zi,~.,~ = 0.515 + 0.006 (5.12) 
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with z z =  0.44 (2 DF, level = 80 % ). This value is greater than our estimate 
for oL/v; thus, the Li-Sokal bound (1.2) holds, though apparently not as a 
strict equality. To compare our result with the one reported in ref. 11, we 
redid the fit using only the data with L ~< 256. The fit again shows a systematic 
decrease of the exponent a s  L m i  n is increased, as well as a poor Z 2, 
until Linen=64, where we get z~,t.~=0.531 +0.005 with X~-=2.67 (1 DF, 
level = 10 % ). This is consistent with the result z,,,. ~ = 0.55 + 0.02 reported in 
ref. 11, but our error bar is one-fourth of theirs. The slightly higher estimate 
of z,,,.,~ in ref. 11 seems to arise from corrections to scaling induced by their 
choice L,,,~n = 16. Actually, the best fit to the data in ref. 11 corresponds to 
L m i  n = 32 and gives zi,t.,~ = 0.52 + 0.02 with X2= 3.93 (2 DF, level = 14% ). 

The fit of the autocorrelation time for the bond occupation o.,I/" follows 
the same pattern: the estimate of the power decreases strongly as L,,in 
increases, and the Z-" is initially horrible; eventually the power stabilizes 
within errors, and the X 2 becomes reasonable. Our preferred fit is L,, , i .  = 128: 

zi,,,.. , =  0.529 _+ 0.006 (5.13) 

with Z2=0.71 (2 DF, l eve l=70%) .  The difference with respect to 7 is 
- in,, ~,~ 

only 2.3 standard deviations, consistent with the theoretical prediction 
(2.29) that Z~nt..,.=Z~,,t.,~. TO check this result, we studied the ratio 
r~ , t . , . / h , , , . , ; .  Since the standard time-series-analysis method would give 
only an upper bound on the right error bar for this quantity, we used 
instead the error bar provided by the "bunch" method. Among all the 
Ansfitze we tried, only one gave a good fit for L,,,~n = 128: asymptotically 
constant with corrections ~ L -  ~/4 (Z2 = 0.75, 2 DF, level = 69 % ). Thus, we 
conclude that in the SW algorithm the dynamic critical behavior of the 
energy and that of the bond density are the same: zi , , t . . , -=Z~n~.e.  

In the same way, we considered the nearest-neighbor connectivity g'. 
The pattern of the fit is the same as above and our preferred fit again 
corresponds to Ln,  i, , = 128: 

zi,,t., c = 0.514 + 0.006 (5.14) 

with Z2= 0.47 (2 DF, level = 79%). This time, the agreement with z~nt,; is 
extremely good, confirming the theoretical prediction (2.41) that 

~" i n t , , r  = - '  i n t , ,  ~, " 

Finally, a similar behavior is observed in the fit for the autocorrelation 
time of the squared magnetization ~  the estimate of the power shows a 
clear trend toward smaller values as Lm~n is increased, and the 2 '2 is initially 
poor. Our preferred fit is Lm~n = 128, for which we get 

zint..//2 = 0.475 + 0.006 (5.15 ) 
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with X 2 = 0.36 (2 DF, level = 84 % ). This power is slightly smaller than z~,,.e, 
(the difference is seven standard deviations). It would be interesting to 
know whether this difference is significant or not. Let us consider the ratio 
rin,,.//~,/rint.x, again using the error bar provided by the "bunch" method. 
We tried to fit this ratio to various Ansfitze, but only two gave good results 
for Lm~n = 32: a pure power-law behavior A L  p with p =-0 .0409- t -0 .0007 
(Xz= 0.57, 5 DF, level = 97 %), and a constant plus corrections of the type 

L-1/16 (Z2= 0.41, 5 DF, level = 98 %). We are therefore unable to resolve 
whether z~,,t,.a., is exactly equal to z~,t,,; or not; but if it is not equal, then 
it is only very slightly smaller (zi,,t..//_,- zi,t.e. ~ -0.04) .  

In conclusion, we have shown numerically that the energy 6 ~, the bond 
occupation ~4r, and the nearest-neighbor connectivity ~' all have the same 
dynamic critical exponent z~,~, as was "almost proved" in Section 2. On the 
other hand, the observable j ( z  has a similar but perhaps not identical 
dynamic critical behavior: z~m.//_, may coincide with zi,,t., ~ or it may be 
slightly smaller. 

5.3. Analysis of the  L i -Soka l  Bound 

In the previous subsection we saw that all the observables considered 
have the same (or, in the case of j /2 ,  almost the same) dynamic critical 
exponent, and the common zin t is strictly larger than 7/v. This implies 
that the Li-Sokal bound (1.2) is not sharp. However, the difference 
z~,,-oc/v ~0.115 is actually not very large. There are a few arguments in 
favor of a more detailed analysis: 

(i) The power-law fit to the specific heat was not very good: the 
estimated value of oc/v decreased as L,,,~, increased, and we were unable to 
reach (within statistical errors) the exact value oc/v = 2/5. If we compare the 
observed values of zi,,t and oc/v, we find that zl,u-~x/v is only ~0.09. 

(ii) The power-law fits to the autocorrelation times also exhibited 
this trend to smaller values as L,,,~, increased. Even though the fits seemed 
stable for L m i  n = 128, this might well be an artifact due to the large error 
bars associated with the largest lattices (L>~ 512) compared to the smallest 
ones (L ~< 256). 

(iii) In refs. 12 and 13 it was shown that differences Zint-Oc/v of order 
0.1 could actually be due to multiplicative logarithmic corrections. Indeed, 
such a multiplicative logarithmic correction was found to be a likely 
scenario even for models not having such a logarithmic correction in the 
specific heat. 
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Here, we will follow the approach of refs. 12 and 13, and consider the 
ratio r~,,.~/Cu; we shall use the error bars obtained from the "bunch" 
method (see Table III). t3 We tried to fit this ratio to different Ans~itze: 

1. A pure power-law behavior A L  p. 

2. A logarithmic growth, either as A + B log L or as A log p L. 

3. Asymptotically constant with additive corrections to scaling 
A + B L  -'~. We considered the cases A =2 ,  1, 1/2, 1/4, 1/8, and 
0 x tog (i.e., ri.t.,~/CH = A + B/log L). 

Among all these Ans/itze, only two were reasonably good. The best 
one is the simple power-law behavior A L  r. For Lm~ . = 32 we obtain 

p = 0.084 ___ 0.002 (5.16) 

with Z 2 = 1.72 (4 DF, level = 79%). When L,,i, > 32, the value of the power 
p stays stable and Z 2 decreases slowly and consistently. 

The second-best fit corresponds to the logarithmic growth A + B log L. 
For Lm,1=64, we get Z- '=  1.93 (3 DF, l eve l=59%) .  Again, the estimates 
are stable for Lm,~> 64 and the Z 2 is reasonable. However, this Ansatz 
seems to be slightly inferior to the power-law fit: both Lmi n and the ;(2 are 
greater than in the power-law case. To test the logarithmic Ansatz, we can 
impose the known critical behavior of the specific heat and perform the fit 
r i . t . ~ = L 2 / 5 ( A + B l o g L ) .  A reasonably good result is obtained for 
Lmi,, = 32, giving X 2 = 1.54 (4 DF, level = 82 % ). 

The asymptotically constant fits are always horrible unless one takes 
L,,,i,, =256 or larger. The only semi-exception is A = 1/8, which gives a 
tolerable fit (;(2= 5.54, 3 DF, level = 14%) already for Lm,, = 64. 

Of  course for Lmi ,=256  we obtain reasonably good fits for all 
Ans/itze. But this is because the error bars for L > 256 are so large that we 
are unable to distinguish among the various scenarios. 

In summary,  we have shown that there are only two likely scenarios 
for the ratio "Cint,,~/Cit: 

,rint,,,~/C.rt ~ ~AL  p with p = 0 . 0 8 4 _ 0 . 0 0 2  (5.17) 
I A + B log L 

or equivalently 

f A L  :'''.'~ with zi.L.~ = 0.515 + 0.006 (5.18) 
rim'c/ ~ ~L2/5(A + B log L) 

13 In this section we only consider the energy tr as the other observables have the same (or 
very slightly smaller) dynamic critical exponent. 
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The first scenario implies that the Li-Sokal  bound (1.2) is a strict inequality, 
with p = z.,t. ~ - c t / v  .~ 0.08-0.12; while the second scenario means that this 
bound is violated only by a logarithm (i.e., the bound is sharp modulo 
logarithms). Thus, the same "dynamic continuity" we found interpolating 
between the two-state and the four-state Potts models along the AT self-dual 
line is also found along the q-state Ports model critical line. Moreover, the 
power p found is midway between the power found for the Ising model 
(p ~ 0.05) and the one found for the four-state Potts model (p ~ 0.12). ~ TM 

5.4. Fur the r  Discussion of  the  L i -Soka l  Bound  

The proof  of the Li-Sokal  bound (Section 2.2) is based on com- 
puting the autocorrelation function for the observable ~l/ at time lags 0 
and 1 in terms of static observables and then exploiting the inequality 
p.g. , . ( t)  ~>p, ,.(1) j'i. The apparent nonsharpness of this bound indicates 
that the large-t behavior of p ,. , ( t )  is not fully predicted by its behavior at 
t = 1. Otherwise put, if we define the initial autocorrelation time 

1 1 + p e ( , ( 1 )  
rinit.~, --=~X 1 --p(,(,(1) (5.19) 

then the Li-Sokal bound 

p Cn 1 
z i " t ' " > ~ r i " i t ' " - I  - p  E -t- 2 (5.20) 

is apparently not sharp: that is, r~,,t..~, and r~,,~. ,. diverge with different 
critical exponents z~,~.. ~. and z i , , .  , .=  ~/v. 

One might ask whether the situation could be improved by computing 
C~. , . ( t )  exactly at (for example) time lag t = 2  or t = 3 .  Because of the 
identities (2.25)/(2.36), this would be equivalent to carrying out the 
Li-Sokal  proof  using d o or do' as the test observable in place of v~ r. At pre- 
sent we do not know how carry out this computa t ion- - the  trouble is that 
we do not know how to express ()'0)'~/) in terms of spin observables--  
but we can nevertheless test numerically whether we wouM obtain a better 
bound on Z~n,.,. and/or zm~,e ., if we couM carry out this computation. 

We thus computed rh,~,,~, for [0 =.,V,  do, do', with error bars given by 
(4.10)14; we then tried various fits, among others the fit r i . i t .e /CH=AL".  ~s 

~4 Since the autocorrelation function for these observables is almost exactly a pure exponential. 
it suffices to perform the sums in {4.10} analytically and then insert the appropriate value 
o f  r .  ( 13~ 

~s For the error bars on rinit.t,/Ctt, we used for simplicity the triangle inequality rather than 
tile (more correct) bunch method. 
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F o r  (9 = ./ff we have  the identity 

rinit.. A. p 1 1 
t - - -  

Cn 1 - p  E 2Cu 

[ p 1 oo ) + aL - 4/5 ] = 1--pE(fl-----~ + "'" + [ b L - 2 / S + c L - 6 / 5 +  "''] 

(5.21a) 

(5.21b) 

where E(fl, or) is the infinite-volume energy at  inverse t empera tu re  fl; and 
we have taken into account  the leading terms and the correct ions to scaling 
discussed in Section5.1.  At criticality f l = f l , . = l o g ( l + x / 3  ) [hence  
p = p c = x / ~ / ( 1  + x / ~ ) ]  we know ''9~ the exact  constant  term: 

Pc 1 3 
- + v / ~  ~ 1.098076 (5.22) 1-p,.E(fl~, oo) 1 

Indeed,  if we fit our  da ta  to the Ansatz  ri,it,. I /CH - 3( 1 + x /~)  = bL-~ we 
obta in  a good  fit for Lmin = 16, and the est imate is 

s = 0.415 + 0.017 (5.23) 

(X2= 1.92, 3 DF ,  level = 86 %) ,  in excellent agreement  with the theoretical  
prediction. O f  course, we could try also the more  primit ive fit 
rinit..~/CH=AL% and we get a good  fit for Lmin= 128: 

r = - 0.010 + 0.002 (5.24) 

(Z 2 = 0.90, 2 D F ,  level = 64 % ), which is very close to the exact result r -- 0. 
All this is trivially to be expected, since our  raw da ta  for p. ,.-. i.-( 1 ), Cu,  and 
E are in good  agreement  with the theoretical  identity (2.16). 

The  analysis becomes nontr ivial  when we look  at t~ = o ~ and 6 ~'. Fo r  
�9 = o ~ we fit 't'init ' r  H = AL" and get a good  fit for L m i  n = 64: 

r = 0.003 ___ 0.003 (5.25) 

(X2=0.91,  3 DF ,  l e v e l = 8 2 % ) .  For  d ~ = r  the ana logous  fit is good  for 

Z m i  n = 32: 

r ---- 0.016 +__ 0.001 (5.26) 

(Z 2=0 .51 ,  4 D F ,  l e v e l = 9 7 % ) .  These exponents  r are a factor  of  ~ 5  
smaller  than  the exponent  est imates for p =-z-o~/v found in Section 5.3. 
This  suggests tha t  rinit ,~/CH and z~,i,.8,/Cn in fact tend to finite constants 
as L---, oo (as we know rigorously to be the case for z~n<.l./Cn) and tha t  

822/87/I-2-3 
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the apparent  nonsharpness  of  the Li -Sokal  bound  cannot  be remedied by 
using g or  ,~' as a test observable in place of  ,/I,2 Rather,  the nonsharpness  
of  the bound  arises from the fact that  the long-time behavior  of  p. ,..,.(t) is 
not  sufficiently well predicted by its behavior  at a n y  small time. 

5.5. Exponent ia l  A u t o c o r r e l a t i o n  T ime 

The exponential  autocorrela t ion time for an observable (9 is defined 
as ~6 

-Itl 
rCxp. ~, = ,-~,lim l~ Per,(t) (5.27) 

This autocorrelat ion time measures the decay rate of  the "slowest mode"  of  
the system, provided that this mode  is not  or thogonal  to (9. 

The critical behavior  of  r~xp, e is, in general, different from the behavior  
of  r~,,.c,. This fact can be seen from the s tandard dynamic  finite-size-scaling 
Ansatz for the autocorrela t ion function p~,c,(t): 

(5.28) 

(Here the dependence on the coupling constants  has been suppressed for 
notat ional  simplicity.) Summing (5.28) over t, it follows that 

Tint. ,, ~ rtxl~.P[ (5.29) 

or equivalently, 

zi,,t.e = ( 1  - - P c )  Z ~xp, e (5.30) 

_ _ c4~ In this latter case the Thus, only when Pe = 0 do we have -h,t.r, =-'c.~p.~ �9 
Ansatz (5.28) can be rewritten in the equivalent form 

Pc '~ ' ( t ;L )~ fTc '  ri~t,~ ' ' (5.31) 

~r, For a general Markov chain, the "lim" should strictly speaking be replaced by "lim sup" 
and p~e(t) should be replaced by its absolute value. But here it can be proven that the limit 
really exists and that p e e(t)/> 0 for all t; this follows from the spectral representation (2.19) 
[or rather its analogue for (' ]. 
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To test this latter Ansatz, we have plotted log pe:e(t) versus tfr~n,, e for 
the observables (_9= jIr (Fig. 1), g (Fig. 2), and g'  (Fig. 3). On each figure 
we have plotted the data coming from different lattice sizes (4~< L ~< 128) 
with different symbols; the error bars are computed from (4.10), using for 
simplicity the approximation ~3~ that the decay is a pure exponential 
(which is here almost exact). On each graph, we have also depicted for 
reference a line corresponding to the pure exponential pec,(t)= e -'/~"'.~. In 
these plots we have omitted the data for L/> 256 for the sake of visual 
clarity; these data agree well with the curve found for smaller L, but with 
huge statistical error bars. 

For (9 = JV we see that the data coming from 16 ~< L ~< 128 collapse 
well onto a single curve. The lattices L = 4 ,  8 show slight systematic 
deviations from this limiting curve: these deviations are negative for 
t/r~,,.. , .~ 1.5 and positive for t/%,,.. ,. >1.5. This trend continues for 
16 ~< L ~< 128, but the deviations are in most cases smaller than the error 
bars (especially for the larger lattices). 

A similar behavior is found for (9 = ~  (Fig. 2) and (9=~ '  (Fig. 3), but 
the corrections to scaling are much weaker and their sign is opposite from 
those seen for jlr. 

AuLoeorrelat ion FuneLion  of N 

. x \  

0.01 . . . . . . .  ~ . . . . .  1 . . . .  ~ _ ~  . . . . . .  , x ~  
0 1 2 3 4 

t/ri~ 

Fig. I. Plot of p.,.. ,.(t) versus t/r~,t.  . , .  for 4 ~< L ~< 128. The different symbols denote the dif- 
ferent lattice sizes: L = 4  (*), L = 8  ( + ) ,  L =  16 ( x ), L = 3 2  (El), L = 6 4  (O) ,  and L =  128 
(C)). We have also depicted the line corresponding to the pure exponential p . , . , . ( t ) =  
exp( - t / r  i ...... ) .  
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v 0, I 

0.01 

0 

A u t o c o r r e l a t i o n  F u n c t i o n  of E 
1 i 

1 2 3 4 5 
L / T i n t , E  

Fig. 2. Plot o f p s j ( t )  versus t/ri,,, a for 4~<L~< 128. The symbols are as in Fig. 1. We have 
also depicted the line corresponding to the pure exponential p~r~(t)= exp(- t / r i , t ,~) .  

A u L o c o r r e l a t i o n  F u n c t i o n  of  E' 
1 

o o i  ~ - ~ '  ' I . . . .  I . . . .  I . . . .  I ,  , ' I!L 
0 I 2 3 4 

t / ? i n t . S '  

Fig. 3. Plot ofp~.e.(t ) versus t/tint. ~, for 4~<L ~< 128, The symbols are as in Fig. 1. We have 
also depicted the line corresponding to the pure exponential p~,e.(t)= e x p ( -  l/rlm.,~, ). 
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Thus, within statistical errors, we have found that the Ansatz (5.31) is 
satisfied. This implies that the integrated and exponential autocorrelation 
times for these three observables have exactly the same dynamic critical 
exponent, i.e., zi,t, c, = Ze,p. e for (9 = sff, g, s This equality does not hold as 
a general rule in the theory of dynamic critical phenomena, t4'6~ but it does 
appear to hold for algorithms of Swendsen-Wang type. 

Finally, we find that p..,., j,.(t) differs slightly but noticeably from the 
pure exponential exp(-t/r~,t,.~.). The discrepancy from a pure exponential 
becomes smaller when we consider the other two observables ~ and g'. 
This is to be expected theoretically from the relations g ~ Pbond,/V" and 
8 ~ ' ~ P s p i n g  [cf .  (2.14)/(2.35)]: each action of Pbona o r  Pspin helps to 
"purify" the slowest mode, so that the autocorrelation function becomes 
closer to a pure exponential. On the other hand, the identities (2.26)/(2.37) 
imply ~v that the limiting (scaling) functions/~ ~, /~r a n d / ~ ,  are identical 
(assuming they exist at all); this means that at least some of the curves in 
Figs. 1-3 have not yet reached their scaling limit. 

Finally, a crude fit suggests that z~ot.r ~ 0.96, in agreement with 
the idea that pr is almost but not quite a pure exponential. 
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